Bharat Book Bureau Provides the Trending Industry Research Report on “Aerospace Robotics Market Robot Type (Traditional Robots, Collaborative Robots), Component (Controllers, Arm Processor, Sensors, Drive, End Effectors), Payload, Application, Region (North America, Europe, Asia Pacific, RoW) - Global Forecast to 2026”under Heavy Industry Market Research Report Category. The report offers a collection of superior Industry research, Industry analysis, competitive intelligence and Industry reports.
The Aerospace Robotics Market is estimated at USD 2.9 billion in 2021 and is projected to reach USD 4.9 billion by 2026, at a CAGR of 11.4% from 2021 to 2026. The aerospace robotics market is growing at a significant rate across the world, and a similar trend is expected to be observed during the forecast period. Increase in global aircraft demand and manufacturing, increasing use of robots for efficient aircraft production processes, growing use of robotics to handle aircraft orders backlog, increasing manual labor cost are fueling the growth of the aerospace robotics market.
The Aerospace robotics market includes major players like Kuka AG (Germany), ABB Group (Switzerland), FANUC Corporation (Japan), Yaskawa electric corporation (Japan), Kawasaki Heavy Industries Ltd (Japan), Mtorres (Spain), Oliver Crispin Robotics Limited (UK), Gudel AG (Switzerland), Electroimpact Inc. (US), Universal Robots A/S (Denmark). These players have spread their business across various countries includes North America, Europe, Asia Pacific, Middle East and Rest of the World. COVID-19 has impacted their businesses as well.
“Based on robot type, the traditional robots will register the highest growth from 2021 to 2026.“
Aerospace manufacturing employs different types of robots for different applications, such as drilling, fastening, painting, and coating. These activities require different robots, and sometimes they require the combination of different robots to perform certain tasks, such as fuselage assembly, aircraft inspection, and health monitoring system. The functioning of the cartesian robots is based on the three linear joints, which are parallel to the standard X, Y, and Z axes formations whereas, articulated robots, which are equipped with two or more rotary joints, enable circular movements. While cylindrical robots are a combination of rotary and linear joints, which enable circular as well as linear movements and can be used in different assembly lines such as fastening, welding, painting & coating, among other applications.
“Based on Component, the end effector segment will register the highest growth from 2021 to 2026.”
End effectors are tools, which include mechanical and electrical devices installed on a robot wrist. End effectors are also called End of Arm Tooling (EOAT). The end effector of an aerospace robot includes tools such as grippers, force-torque sensors, material removal tools, welding torches, collision sensors, and tool changers, among others. The gripper is commonly used in picking objects and is the most used end effector in aerospace robotics as it has diverse gripping techniques and styles. The Force-Torque Sensor (FT) calculates the force and torque applied by the robot through the tool. It is also called six-axis force-torque sensor due to the feature of measuring three force components, namely, (x-y-z) as well a 3-torques force around these axes. The material removal tool has drilling, cutting, and deburring tools installed as robot tools.
“Based on application, the processing segment will register the highest growth from 2021 to 2026.”
When a product is made in a factory, it has to go through several different processes before it is shipped out to reach the consumer. First, it has to be picked, then it has to be packed into a box, and then those boxes have to be palletized. All of these applications can be automated with robots. Many aerospace manufacturing companies invest in picking, packing, or palletizing robots as they are able to perform these functions more accurately and efficiently than manual operations. This type of complex integration requires an integrator that is capable of integrating complex production lines that do not just involve robotics, but vision systems, PLCs, hard automation, grippers, end-of-arm tooling, conveyors, and more to create a fully automated work cell that would be capable of running at high speeds without a lot of issues along the way.
“Based on region, Asia Pacific region will register the highest growth from 2021 to 2026.”
China, Japan, and India in the Asia Pacific region are expected to increase acquisitions of robotic systems and invest in research & development in aerospace manufacturing. In addition to this, these countries are investing in automated solutions to strengthen their manufacturing capacities and make advancements in the manufacturing process. Companies from China and India are importing robotic technologies from Western countries to enhance the productivities of their facilities. However, many aerospace robotics manufacturers are based in the Asia Pacific region. Some of the key manufacturers are Yaskawa Electric Corporation (Japan), Kawasaki Heavy Industries, Ltd (Japan), and FANUC Corporation (Japan). In addition to this, China is an emerging country in the field of commercial aircraft manufacturing with the state-owned organization, Commercial Aircraft Corporation of China, Ltd. (COMAC).
The break-up of the profiles of primary participants in the Airborne ISR market is as follows:
•By Company Type: Tier 1 - 35%; Tier 2 - 45%; and Tier 3 - 20%
•By Designation: C Level Executives - 35%; Directors - 25%; and Others - 40%
•By Region: North America - 40%; Europe - 30%; Asia Pacific - 25%, Rest of the World - 5%
Major players in the Aerospace robotics market are Kuka AG (Germany), ABB Group (Switzerland), FANUC Corporation (Japan), Yaskawa electric corporation (Japan), Kawasaki Heavy Industries Ltd (Japan), Mtorres (Spain), Oliver Crispin Robotics Limited (UK), Gudel AG (Switzerland), Electroimpact Inc. (US), Universal Robots A/S (Denmark).
Research Coverage
This market study covers the Aerospace robotics market across various segments and subsegments. It aims at estimating the size and growth potential of this market across different segments based on application, robot type, component, payload, and region. This study also includes an in-depth competitive analysis of the key players in the market, along with their company profiles, key observations related to their product and business offerings, recent developments undertaken by them, and key market strategies adopted by them.
Reasons to Buy this Report
This report is expected to help market leaders/new entrants by providing them the closest approximations of the revenue numbers for the overall aerospace robotics market and its segments. This study is also expected to provide region-wise information about the applications wherein aerospace robotic solutions are used. It also aims at helping the stakeholders understand the competitive landscape of the market, gain insights to improve the position of their businesses and plan suitable go-to-market strategies. This report is also expected to help them understand the pulse of the market and provide them with information on key drivers, restraints, challenges, and opportunities influencing the growth of the aerospace robotics market.
The report provides insights on the following pointers:
•Market Penetration: Comprehensive information on aerospace robotics products/ solutions offered by the top players in the market
•Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product launches in the aerospace robotics market
•Market Development: Comprehensive information about lucrative markets – the report analyses the aerospace robotics market across varied regions
•Market Diversification: Exhaustive information about new products, untapped geographies, recent developments, and investments in the aerospace robotics market
•Competitive Assessment: In-depth assessment of market shares, growth strategies, products, and manufacturing capabilities of leading players in the aerospace robotics market
Browse our full report with Table of Content : https://www.bharatbook.com/report/1086125/aerospace-robotics-market-robot-type-traditional-robots-collaborative-robots-component-controllers-arm-processor-sensors-drive-end-effectors-payload-application-region-north-america-europe-asia-pacific-row-global-forecast-to
About Bharat Book Bureau:
Bharat Book is Your One-Stop-Shop with an exhaustive coverage of 15,00,000 reports and insights that includes latest Industry Study, Industry Trends & Analysis, Forecasts Customized Intelligence, Newsletters and Online Databases. Overall a comprehensive coverage of major industries with a further segmentation of 100+ subsectors.
Contact us at:
Bharat Book Bureau
Tel: +91 22 27810772 / 27810773
Email: poonam@bharatbook.com
Website: www.bharatbook.com
No comments:
Post a Comment